Документ подписан простой электронной подписью Информация о владельце:

ФИО: Линник Оксана Владимиров НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должноста подписания и 3-14-20-37 15-47-56 и исследовательский ядерный университет «МИФИ» Уникальный программный ключ:

d85fa2f259a0913da9b08299985891736 Сиежинский физико-технический институт —

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СФТИ НИЯУ МИФИ)

«УТ	ВЕРЖДАН	O»
Зам.	. руководит	еля по учебной
и на	учно-метод	цической работе
		П. О. Румянцев
~	>>	20 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫМАТЕМАТИЧЕСКИЕ МОДЕЛИ МЕХАНИКИ

наименование дисциплины

Направление подготовки	01.04.02 «Прикладная математика и информатика»
Профиль подготовки	«Математическое обеспечение компьютерных технологий»
Наименование образовательн	ной программы:
Квалификация (степень) вып	ускника:магистр
	(бакалавр, магистр, специалист)
Форма обучения	очная
	(очная, очно-заочная (вечерняя), заочная)

г. Снежинск, 2022 г.

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина относится к вариативной части общенаучного цикла основной образовательной программы подготовки магистров по направлению 01.04.02 "Прикладная математика и информатика". Курс «Математические модели механики» связан с последующим изучением дисциплин профильного цикла.

Предшествующие дисциплины: математический анализ, дифференциальные уравнения, теоретическая механика. Дисциплины, для которых данная дисциплина является предшествующей: Инженерные методы МДТТ, Математическое моделирование в комплексе программ ANSYS, Устойчивость вязкоупругих систем, Математические модели МДТТ. Знания, полученные при освоении дисциплины, необходимы для выполнения магистерской диссертации.

Изучение дисциплины осуществляется в ходе лекционных занятий с решением конкретных задач в различных информационных ситуациях на практических занятиях, в течение одного семестра (6 курс), в первом семестре производится промежуточная аттестация в виде зачета и процесс изучения завершается сдачей экзамена.

В процессе обучения студенты должны усвоить основные понятия различных разделов МСС, ознакомиться с постановками задач МСС и с методами их решения, приобрести некоторые навыки исследования и решения задач МСС на ЭВМ. По курсу предусмотрены защиты лабораторных работ.

Требования к уровню освоения дисциплины:

- иметь представление: об основах МСС;
- знать: основные модели и методы МСС;
- уметь: строить модели МСС; приобрести навыки: решения задач МСС.
- владеть: методами решения задач МСС.

3. КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

УК-1	Способен осуществлять критический анализ проблемных ситуаций
	на основе системного подхода, вырабатывать стратегию действий
ОПК-1	Способен решать актуальные задачи фундаментальной и прикладной
	математики
ОПК-2	Способен совершенствовать и реализовывать новые математические
	методы решения прикладных задач
ОПК-3	Способен разрабатывать математические модели и проводить их ана-
	лиз при решении задач в области профессиональной деятельности

ОПК-4	Способен комбинировать и адаптировать существующие информа-
	ционно-коммуникационные технологии для решения задач в области
	профессиональной деятельности с учетом требований информацион-
	ной безопасности
ПК-1	Способен проводить научные исследования и получать новые науч-
	ные и прикладные результаты самостоятельно и в составе научного
	коллектива
ПК-2	Способен к разработке и внедрению наукоемкого программного
	обеспечения, способствующего решению передовых задач науки и
	техники на основе современных математических методах и алгорит-
	мах
ПК-3	Способен развивать инновационный потенциал новых научных и
	научно-технологических разработок
ПК-5	Способен четко формулировать цели и задачи научно-прикладных
	проектов, разрабатывать концептуальные и теоретические модели
	решаемых задач
ПК-9	Способен использовать современные информационные технологии в
	образовательной деятельности
ПК-10	Способен осуществлять подготовку и переподготовку кадров в обла-
	сти прикладной математики и информационных технологий

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Семест	р Трудоем-	Общий	Лекции,	Лабораторные/	КСР,	CPC,	Форма
	кость,	объем курса,	час.	Практич.	час.	час.	контроля,
	кредит	час.		занятия,			Экз./зачет
				час.			
1	3	108	18	18	0	72	зачет

Занятия в интерактивной форме составляют 0 часов от общего объёма аудиторных занятий. Общая трудоемкость дисциплины составляет <u>3</u> кредитов, <u>108</u> часов.

	№ Раздел учебной дисци- п/п плины		сти, ві тельнун	чебной деяте ключая самос о работу студ ремкость (в ч Практ. за-	тоя- ентов	Аттестация раздела <i>(не-</i> <i>деля, фор-</i> <i>ма)</i>	Текущий контроль успеваемости (неделя, форма)	Максимальный балл за раздел *
				нятия/ се- минары				
				4 семе	стр			
1	Введение.	1	2	2				10
2	Кинематика деформируемых сред.	2-3	4	4				10
3	Основные динамиче- ские, термодинамиче- ские и электродинами- ческие понятия и урав- нения.	4-6	4	4				10
4	Модели материальных сплошных сред. Задачи и методы их решения.	7-8	4	4				10

5	Теория размерностей.	9-10	4	4				10
Всего:			18	18	-	-	-	50
Зачет, Экзамен								50
	Итого за 4 семестр:							100

При сдаче отчетов и письменных работ проводится устное собеседование.

4.2. Содержание разделов дисциплины

Раздел 1. Тема 1.1. Введение

Общая характеристика механики сплошной среды (MCC). Основные проблемы MCC. MCC как фундаментальная наука, ее место среди других естественных наук. Свойства твердых, жидких и газообразных сред. Молекулярная макроскопическая структура реальных тел, статистические и феноменологические методы описания их свойств.

Тема 1.2. Кинематика деформируемых сред

Два способа изучения движения сплошной среды. Лагранжева и Эйлерова системы координат, вмороженные координатные линии, местный ковариантный базис. Закон движения, поле перемещений, поле скоростей, поле температур и т. д. Индивидуальная и местная производные по времени. Траектории и линии тока. Элементы тензорного исчисления. Ковариантные, контравариантные и физические компоненты векторов и тензоров. Метрический тензор. Символы Кристоффеля и ковариантное дифференцирование. Деформация бесконечно малой частицы. Тензоры конечной и малой деформации. Инварианты тензоров и характеристическое уравнение. Главные оси тензоров. Механический смысл компонент тензора малой деформации. Разложение движения малой частицы на поступательное, вращательное движения и чистую деформацию. Вектор поворота. Девиатор и шаровой тензор, их геометрический смысл. Формула Чезаро. Уравнение совместности деформаций. Бесконечно малые деформации. Формулы Стокса. Тензор скоростей деформаций, его связь с тензором деформаций. Уравнение совместности скоростей деформаций. Вихрь скорости, его кинематический смысл. Вихревые линии и поверхности. Теорема Стокса. Потенциальные и безвихревые движения, их связь. Циркуляция вектора скорости. Кинематические теоремы Гельмгольца. Дивергенция вектора перемещения и дивергенция вектора скорости, их кинематический мысл. Условие несжимаемости сплошной среды.

Раздел 2. Основные динамические, термодинамические и электродинамические понятия и уравнения

Масса и плотность. Уравнение сохранения массы. Массовые и поверхностные, внешние и внутренние силы. Тензор напряжений, его свойства. Связь компонент тензора напряжений, представленного этими компонентами в эйлеровой декартовой или криволинейной, а также в лагранжевой системах координат. Девиатор и шаровой тензор. Главные касательные напряжения, главные площадки. Динамические уравнения движения сплошной среды, формы записи. Первые интегралы уравнения движения. Интеграл Бернулли. Интеграл Коши-Лагранжа. Элементарная работа внутренних массовых и поверхностных сил. Кинетическая энергия.

Раздел 3. Модели материальных сплошных сред.

Задачи и методы их решения

Уравнения состояния сплошной среды. Постулаты механики сплошной среды. Замкнутые системы уравнений. Краевые и начальные условия. Изотермические задачи, связанные и несвязанные термомеханические задачи. Постановки эволюционно краевых задач в Лагранжевой и в Эйлеровой системах координат. Постановки эволюционно-краевых задач в смешанной форме, "в перемещениях", "в напряжениях". Свойства изотропии и анизотропии. Модель идеальной несжимаемой жидкости. Уравнение состояния. Уравнение Эйлера. Модель сжимаемой идеальной жидкости для баротропных процессов. Совершенный газ. Закон Архимеда. Основные задачи гидростатики. Интеграл Бернулли. Интеграл Коши-Лагранжа. Явление кавитации, чило кавитации. Элементарная теория сопла Лаваля. Теорема Томсона. Теорема Лагранжа. Динамические теоремы Гельмгольца. Закон вмороженности вихревых линий. Источник,

сток, диполь. Задачи о равномерном и неравномерном движении сферы в жидкости или об ее обтекании жидкостью. Модель линейно-вязкой жидкости. Закон Навье-Стокса для связей тензоров напряжений и скоростей деформаций, диссипация энергии в вязкой жидкости. Модель вязкой несжимаемой теплопроводной жидкости. Решение Пуазейля. Уравнения Прандтля. Задача Блазиуса. Ламинарные и турбулентные движения, опыт Рейнольдса. Модель нелинейно-вязкой жидкости. Задача о движении нелинейно-вязкой жидкости по цилиндрической трубе. Модель изотропного линейно-упругого тела, закон Гука. Механически несжимаемые материалы. Упругие константы Ляме. Модуль упругости, модуль сдвига, коэффициент Пуассона, модуль объемного расширения. Постановки задач для механически сжимаемых и механически несжимаемых материалов. Уравнение Ляме. Уравнения Бельтрами-Митчелла. Полуобратный метод Сен-Венана. Принцип Сен-Венана. Модель анизотропного линейно-упругого тела, закон Гука. Краткий обзор других моделей сплошных сред.

Раздел 4. Теория размерностей

Системы единиц измерения. π -теорема. Задача об обтекании тела вязкой несжимаемой жидкостью. Число Рейнольдса. Задача о движении корабля в тяжелой вязкой жидкости. Число Фруда. Задача о движении тела в идеальном газе. Число Маха. Задача Буссинеска. Подобие и моделирование явлений. Моделирование по Фруду.

Темы практических или семинарских занятий.

- Раздел 1. Кинематика деформируемых сред
- Раздел 2. Основные динамические, термодинамические и
- Раздел 3. Модели материальных сплошных сред. Задачи и методы их решения

Темы лабораторных занятий.

- 1. Моделирование в ANSYS, решение задач механики сплошных сред.
- 2.1. Задачи механики деформируемого тела. Задачи теории упругости. Задачи теории упругих колебаний.
- 2.2. Задачи механики жидкости и газа. Задачи о движении идеальной жидкости или газа. Задачи о движении вязкой жидкости или газа.

5. Образовательные технологии

При освоении дисциплины используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности магистрантов для достижения запланированных результатов обучения и формирования компетенций.

Методы и формы акти-	Виды учебной деятельности							
визации деятельности	ЛК	Семинар	ЛБ	CPC				
Дискуссия	X	X						
<i>IT</i> -методы	X		X	X				
Командная работа		X	X	X				
Разбор кейсов		X						
Опережающая СРС	X	X	X	X				
Индивидуальное обуче-			X	X				
ние								
Проблемное обучение		X	X	X				
Обучение на основе		X	X	X				
опыта								

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием *Internet*-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;

• закрепление теоретического материала при проведении лабораторных работ с использованием учебного и научного оборудования и приборов, выполнения проблемно-ориентированных, поисковых, творческих заданий.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

• Черепашков А.А., Носов Н.В. Компьютерные технологии, моделирование и автоматизированные системы в машиностроении. Учебник для вузов. – Волгоград: Издательский дом «Ин-Фолио», 2009 – 640 с.

б) дополнительная литература:

- Потемкин А. Трехмерное твердотельное моделирование. М.: КомпьютерПресс, 2002 296 с.
- Диевский В.А. Теоретическая механика: учебное пособие.— СПб.: Лань, 2009 320 с.
- Седов Л.И. Механика сплошной среды. В 2 т. Т.1.– Изд. 3-е, испр. и доп.– М.: Наука, 1976. 535с.

в) программное обеспечение и Интернет-ресурсы:

http://ibooks.ru/

http://e.lanbook.com/

http://www.biblio-online.ru/home;jsessionid=2e1f56dad5e63541356653818b3d?0

http://kuperbook.biblioclub.ru/

http://www.studentlibrary.ru/

 $\underline{http://libcatalog.mephi.ru/cgi/irbis64r/cgiirbis_64.exe?C21COM=F\&I21DBN=BOOK\&P21DBN=BO$

7. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРО-МЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.

Самостоятельная работа студентов составляет 16,11% от общего объёма занятий, предусмотренных рабочим учебным планом направления подготовки 01.04.02 «Прикладная математика и информатика».

Часы на самостоятельную работу распределяются равномерно на весь курс обучения. Разделы, выводимые на самостоятельное изучение в рамках лекционных и практических разделов, устанавливаются преподавателем на каждой неделе, в зависимости от скорости усвоения материала студентами. Темы для самостоятельного изучения оглашаются преподавателем в конце каждого занятия и заносятся студентами в график самостоятельной работы.

Текущий контроль успеваемости проводится посредством проверки домашних заданий и конспекта текущей лекции.

Аттестация раздела проводится в виде контрольной работы. Максимальный балл за каждый раздел установлен п.4. настоящей рабочей программы.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная аудитория для проведения занятий лекционного и практического типа (Л217), укомплектованная специализированной мебелью и средствами обучения, служащими для представления информации большой аудитории::

- AMP преподавателя: ноутбук Dell 1 шт.,
- проектор Casio − 1 шт.,
- экран проекционный Cactus WallExpert 1 шт.,
- доска школьная 1 шт., стойка-кафедра 1 шт.;

- 56 рабочих мест студента.

Помещение для самостоятельной работы обучающихся (207), оснащенная компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду:

- APM преподавателя: компьютер HP 260 G2-1 шт.,
- проектор Acer X1260 1 шт.,
- интерактивная доска SmartBoard − 1 шт.,
- школьная доска 1 шт.;
- 24 рабочих места для студентов

9. Фонд оценочных средств

Примерные вопросы к зачету:

- 1. Лагранжева и эйлерова системы координат.
- 2. Индивидуальная, местная, конвективная производные. Найти связь между ними. Физический смысл конвективной производной.
- 3. Вывести уравнение закона сохранения массы.
- 4. Тензор второго ранга, его диадное представление.
- 5. Ввести понятие тензора деформации (на основе рассмотрения деформации физического волокна). Выразить тензор деформаций метрическими тензорами.
- 6. Ввести понятия: главные значения, главные направления, инварианты тензора деформации.
- 7. Раскрыть механический смысл компонент тензора малых деформаций.
- 8. Получить выражение компонент тензора деформаций через компоненты вектора перемешения.
- 9. Дать разложение тензора малой деформации на сумму девиатора и шарового тензора, раскрыть механический смысл слагаемых.
- 10. Малые и бесконечно малые деформации. Ввести понятие тензора скоростей деформации. Вывести формулы Стокса.
- 11. Ввести понятие вектора вихря, его механический смысл. Установить связь потенциальности поля скоростей и отсутствия вихрей.
- 12. Вывести формулы Чезаро.
- 13. Вывести 2 уравнения Сен-Венана (из 6), исходя из формул Чезаро. Записать 6 уравнений Сен-Венана в общей форме.
- 14. Дать определение идеальной жидкости, построить уравнения ее состояния.
- 15. Вывести уравнение движения идеальной жидкости уравнение Эйлера.
- 16. Линии тока, построить уравнения линии тока. Построить интеграл Бернулли.
- 17. Вихревая линия, уравнение вихревой линии. Вихревая трубка. Доказать 2 теоремы Гельмгольца.
- 18. Ввести тензор напряжений. Построить формулу Коши.
- 19. На основе анализа поверхности напряжений ввести понятия: главные значения, главные направления тензора напряжений, инварианты тензора напряжений.
- 20. Разложение тензора напряжений на сумму девиатора и шарового тензора, механический смысл слагаемых.
- 21. Вывести уравнение движения конструкции, записать его через девиатор тензора напряжений.
- 22. Структура математической модели сплошной среды в лагранжевой системе координат в смешанной форме.
- 23. Структура математической модели сплошной среды в лагранжевой системе координат "в перемещениях".
- 24. Структура математической модели сплошной среды в лагранжевой системе координат "в напряжениях".
- 25. Структура математической модели сплошной среды в эйлеровой системе координат.
- 26. Математическая модель идеальной несжимаемой жидкости в случае переменной температуры.

- 27. Записать феноменологический закон линейно-вязкой жидкости. Получить соотношения, связывающие среднее гидростатич.напряжение и divV, девиаторы тензоров напряжений и скоростей деформаций.
- 28. Вывести уравнение Навье-Стокса уравнение движения линейно-вязкой жидкости.
- 29. Математическая модель линейно-вязкой жидкости в смешанной форме.
- 30. Математическая модель линейно-вязкой жидкости "в скоростях", уравнение Навье-Стокса.
- 31. Получить уравнения состояния линейной теории термоупругости разрешенные относительно тензора напряжений
- 32. Получить уравнения состояния линейной теории термоупругости разрешенные относительно тензора деформаций
- 33. Получить формулы, выражающие коэффициенты Ляме и модуль об'емного расширения через модуль упругости, коэффициент Пуассона. Область значений коэффициента Пуассона, его физический смысл.
- 34. Записать уравнения состояния линейно-упругой конструкции с использованием модуля упругости и коэффициента Пуассона.
- 35. Математическая модель механически сжимаемой линейно-упругой сплошной среды.
- 36. Математическая модель механически несжимаемой линейно-упругой сплошной среды.
- 37. Обобщенный закон Гука (21 коэффициент упругости) и математическая модель анизотропной линейно-упругой конструкции
- 38. Обобщенный закон Гука (13 коэффициентов упругости) и математическая модель анизотропной линейно-упругой конструкции
- 39. Обобщенный закон Гука (9 коэффициентов упругости) и математическая модель анизотропной линейно-упругой конструкции
- 40. Математическая модель цилиндрического линейно-упругого стержня, находящегося под действием растягивающих сил.
- 41. Математическая модель цилиндрического линейно-упругого стержня круглого поперечного сечения, находящегося под действием закручивающих моментов.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 01.04.02 «Прикладная математика и информатика», ОС ВО НИЯУ МИФИ протокол № 21/11 от 27.07.2021 г.

Автор:	к.т.н., Зуев Юрий Семенович
Рецензент	
Программа од	обрена на заселании ОТЛ 29 июня 2022 г. протокол №