МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Снежинский физико-технический институт –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СФТИ НИЯУ МИФИ)

~~	>>	20	Б	
		Pvn	иянцев П.О.	
нау	чно-м	етодичесь	кой работе	
Зам	и. руко	водителя	по учебной и	1
Утн	вержда	Ю:		

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 03. ПРИКЛАДНАЯ ЭЛЕКТРОНИКА

> Снежинск 2021

Рабочая программа учебной дисциплины «Прикладная электроника» разработана на основе Федерального государственного образовательного стандарта (далее - ФГОС) по специальности среднего профессионального образования (далее СПО): **09.02.01. Компьютерные системы и комплексы**

Организация-разработчик: СФТИ НИЯУ МИФИ
Разработчик:
Рассмотрена на ПК технического цикла
Протокол № от «» 20 г.
Рекомендована учебно-методическим советом СФТИ НИЯУ МИФИ
Протокол № от «» 20 г.
11po10kon nº 01 \\ // 20 1.

СОДЕРЖАНИЕ

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	∠
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ	
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ

ДИСЦИПЛИНЫ

Прикладная электроника

1.1. Область применения программы

Программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с $\Phi \Gamma OC$ по специальности СПО 09.02.01 Компьютерные системы и комплексы .

1.2. Место дисциплины в структуре основной профессиональной образовательной программы: Учебная дисциплина «Прикладная электроника» является общепрофессиональной дисциплиной и входит в состав профессионального цикла учебных дисциплин по специальности СПО <u>09.02.01 Компьютерные</u> системы и комплексы.

1.3. Цели и задачи дисциплины - требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен уметь:

определять и анализировать основные параметры электронных схем и по ним определять работоспособность устройств электронной техники; производить подбор элементов электронной аппаратуры по заданным параметрам.

В результате освоения дисциплины обучающийся должен знать:

- сущность физических процессов, протекающих электронных приборах и устройствах;

принципы включения электронных приборов и построения электронных схем.

1.4. Рекомендуемое количество часов на освоение программы дисциплины:

максимальной учебной нагрузки обучающегося 164 часа, в том числе: обязательной аудиторной учебной нагрузки обучающегося - 109 часа; самостоятельной работы обучающегося - 55 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	148
Обязательная аудиторная учебная нагрузка (всего)	105
Самостоятельная работа обучающегося (всего)	43

Итоговая аттестация в форме дифференцированного зачета

	наименование		
Наименование раздело и тем	ов Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект) (если предусмотрены)	Объем часов	Уровень освоения
1	2	3	4
Тема 1. Электрон-	Содержание учебного материала		
ные приборы	1 Физические основы электронных приборов: Энергетические уровни атома. Энергетические зоны твёрдого тела. Движение электрона в электрическом поле. Движение электрона в магнитном поле. Общие сведения о полупроводниковых материалах. Структура полупроводников. Виды проводимости. Токи в полупроводниках. Образование p-n - перехода. Явления инжекции и экстракции в p-n - переходе. Принцип работы p-n - перехода. Характеристики и параметры p-n - перехода. Виды пробоя p-n - перехода.	20	1
	2 Полупроводниковые диоды: Устройство полупроводниковых диодов. Основные параметры и характеристики полупроводникового диода. Выпрямительные диоды. Высокочастотные и сверхвысокочастотные диоды. Стабилитроны. Импульсные диоды. Варикапы и параметрические диоды. Туннельные диоды. Обращенные диоды. Диоды Ганна. Условное обозначение		3
	3 Биполярные транзисторы: Классификация транзисторов. Устройство и принцип действия транзистора. Схемы включения транзисторов. Статический режим работы транзистора. Статические характеристики. Динамический режим работы транзистора. Системы параметров транзисторов. Частотные свойства транзисторов. Работа транзисторов в импульсном режиме.		3
	4 Полевые транзисторы: Основные определения и устройство полевого транзистора. Принцип работы полевого транзистора с управляющим переходом. Конструкция и принцип действия МДП-транзистора с индуцированным каналом. Конструкция и принцип действия МДП-транзистора со встроенным каналом. Области применения полевых транзисторов.		3
	5 Типы и конструкции транзисторов: Сплавные транзисторы. Дрейфовые транзисторы. Однопереходный транзистор. Лавинный транзистор. Тиристоры. Прочие полупроводниковые приборы.		2
	Фотоэлектронные и оптоэлектронные приборы: Общие сведения об электровакуумных фотоэлектрических приборах. Фотоэлементы. Фотоэлектронные умножители. Общие сведения о полупроводниковых фотоэлектронных приёмниках излучения. Фоторезисторы. Фотодиод. Биполярный фототранзистор. Полевой фототранзистор. Фототиристор. Матричные фоточувствительные приборы с зарядовой связью. Оп-трон, конструкция, принцип работы, характеристики. Общие сведения об оптоэлектронных полупроводниковых приборах. Светоизлучающий диод. Оптопара. Оптические квантовые генераторы (лазеры).		3
	7 Устройства отображения информации: Общие сведения об электронно-лучевых трубках. Электроннолучевая трубка с электростатическим управлением. Электронно-лучевая трубка с магнитным перации ием. Приёмные электронно-лучевые трубки. Запоминающие трубки. Общие сведения о матричных приборах отображения информации. Понятие о жидких кристаллах. Организация формирования изображения в матричном устройстве.		2
	8 Интегральные микросхемы: Общие сведения и история развития интегральной микроминиатюрной элементной базы. Пассивные элементы и компоненты интегральных микросхем. Активные элементы и компоненты интегральных микросхем. Общие сведения о цифровых интегральных микросхемах. Параметры и характеристики цифровых интегральных микросхем. Цифровые интегральные микросхемы на биполярных транзисторах. Цифровые интегральные микросхемы на МДП-транзисторах. Общие сведения об аналоговых интегральных микросхемах. Параметры и характеристики аналоговых интегральных микросхем. Операционный усилитель. Интегратор на операционном усилителе. Дифференциатор на		2

2.2. Тематический план и содержание учебной дисциплины «Прикладная электроника» перациионном усилителе. Компаратор. Лабораторные занятия 14 Исследование полупроводниковых диодов Исследование полупроводникового стабилитрона Исследование биполярного транзистора, включенного по схеме с общим эмиттером Исследование полевого транзистора Исследование тиристора 2 Практические занятия Определение h - параметров биполярных транзисторов Контрольная работа по теме Физические основы электронных приборов», «Полупроводниковые диоды», «Биполярные транзисторы», «Полевые транзисторы», «Фотоэлектронные полупроводниковые приемники излучения», «Компоненты 5 полупроводниковых микросхем». Самостоятельная работа обучающихся 18 систематическая проработка конспектов занятий, учебной и специальной технической литературы (по вопросам к параграфам, главам учебных пособий, составленным преподавателем); подготовка реферата (компьютерной презентации) по теме «Многоэлектродные лампы», «Полупроводниковые приборы», «Полупроводниковые светодиоды», «Матричные устройства отображения информации», «Цифровые и аналоговые интегральные микросхемы»; чтение чертежей схем: ответы на вопросы; решение задач. 32 Тема 2. Усилители и Содержание учебного материала генераторы Основные технические показатели усилителей: Общие сведения об электронных усилителях. Основные определения. Классификация усилителей. Принцип усиления. Требования, предъявляемые к усилителям. Входные и выходные показатели. Коэффициент усиления и коэффициент полезного действия. Характеристики усилителя. 1 Искажения в усилителях: Частотные искажения. Фазовые искажения. Переходные искажения. Нелинейные искажения, коэффициент гармоник. Обратная связь в усилителях: Прямое прохождение сигнала, обратное прохождение сигнала. Основные признаки и определения вида обратной связи. Классификация обратных связей. Влияние на коэффициент усиления и его стабильность. Влияние на частотную, фазовую и переходную характеристику. Влияние на входное и выходное сопротивление. Влияние на нелинейные искажения и динамический диапазон усиления. Режимы работы и питание усилительного элемента: Питание выходной цепи усилительного элемента. Напряжение смещения. Режим работы класса А. Режим работы класса В. Режим работы класса АВ. Режим работы класса С.Схемы стабилизации напряжения смещения (температурная компенсация; применение отрицательной обратной связи, коллекторная стабилизация, эмиттерная стабилизация и пр.). Выходные динамические характеристики, построение линии нагрузочной прямой, входные динамические характеристики. Параметры усилительных элементов. Предварительный усилитель: Резисторный усилитель напряжения: особенности работы и методика анализа работы, схема, принцип действия, назначение элементов, характеристики, показатели. Трансформаторный каскад усиления: электрическая и эквивалентная схемы, принцип работы, назначение элементов, характеристики, частотные искажения. Усилители мощности: Классификация выходных каскадов. Параметры и характеристики усилителей мощности. Трансформаторное включение нагрузки. Бестрансформаторные однотактные каскады УМ. Основные схемы УМ. Принцип действия, назначение элементов. Уметь вычерчивать схемы электрические принципиальные в соответствии с требованиями ГОСТ, ЕСКД, норм компьютерной графики. Достоинства и недостатки двухтактных схем. Режимы работы усилительных элементов. Назначение элементов схем. Двухтактные бестрансформаторные каскады усиления мощности. Двухтактные трансформаторные каскады усиления мощности. Назначение, использование ФИК. Принципиальные схемы, назначение элементов схем: ФИК с разделенной нагрузкой, ФИК с эмиттерной связью, ФИК на двух транзисторах (включенных по схеме с ОЭ).

	<u></u>		
1	7 Усилители постоянного тока (УПТ): Общие сведения. УПТ прямого усиления: схема, принцип работы, назначение		2
	элементов. Дрейф нуля и способы его уменьшения. Применение оптронов в УПТ, оптронная развязка входных и		
	выходных цепей. УПТ с преобразованием. Вариант расчета схемы УПТ.		
	8 Операционные усилители: Применение операционных усилителей (ОУ). Статические и динамические свойства ОУ.		3
	Параметры ОУ. Общие требования к ОУ. Построение структурных схем ОУ. Инвертирующий, неинвертирующий,		
	суммирующий усилители, повторитель напряжения, напряжение смещения в ОУ, интегрирующий усилитель,		
	дифференциальный усилитель на ОУ. Коэффициент усиления переменного сигнала. Частотная		
	коррекция. Принципиальная схема простейшего дифференциального каскада, принцип работы, назначение элементов.		
	Основные параметры и характеристики дифференциальных усилителей.		2
	9 Генераторы гармонических колебаний: Типы генераторов гармонических колебаний. Условия самовозбуждения		3
	автогенераторов. Принцип действия LC и RC генераторов. Кварцевая стабилизация частоты автогенераторов. Автогенераторы на ИМС.		
	Лабораторные занятия	14	
	1 Исследование влияния отрицательной обратной связи на работу транзисторного усилителя низкой частоты		
	2 Исследование предварительного усилителя низкой частоты по схеме с общим эмиттером		
	3 Исследование двухтактного усилителя мощности НЧ с бестрансформаторным выходом		
	4 Исследование LC, RC генераторов		
	Практические занятия		1
	1 Расчет параметров двухтактного бестрансформаторного усилитея мощности		
	Контрольная работа по теме «Классификация усилителей», «Искажения в усилителях», «Обратная связь», «Режимы работы и питания усилительного элемента»	4	
	Самостоятельная работа обучающихся	20	
	- систематическая проработка конспектов занятий, учебной и специальной технической литературы (по вопросам к		
	параграфам, главам учебных пособий, составленным преподавателем);		
	- оформление практических работ, отчетов и подготовка к их защите;		
Гема 3. Импульсные	- подготовка реферата (компьютерной презентации) по теме «Операционные усилители» Содержание учебного материала		-
устройства	1 Электронные ключи и формирование импульсов: Общая характеристика импульсных устройств, параметры	10	1
строиства	импульсных сигналов. Диодные и транзисторные электронные ключи. Формирование импульсов: ограничители,	10	1
	дифференцирующие цепи, интегрирующие цепи. 2 Генераторы релаксационных колебаний: Классификация генераторов. Мультивибратор, одновибратор. Устройство,		3
	принцип действия, применение. Мультивибратор и одновибратор в интегральном исполне-		3
	принцип деиствия, применение. мультивноратор и одновноратор в интегральном исполне-		

нии. Генератор линейно - изменяющегося напряжения. Принцип действия, применение.		
Лабораторные занятия	2	
1 Исследование импульсных схем на транзисторах (мультивибратор, блокинг - генератор)		
Практические занятия (не предусмотрено)	-	
Контрольная работа по теме	1	
Самостоятельная работа обучающихся	5	
- систематическая проработка конспектов занятий, учебной и специальной технической литературы (по вопросам к		
параграфам, главам учебных пособий, составленным преподавателем);		
- оформление практических работ, отчетов и подготовка к их защите;		
- подготовка реферата (компьютерной презентации) по теме «Применение мультивибраторов»		
Bcero: 14	48	

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание ранее изученных объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины предполагает наличие учебного кабинета и лаборатории «Электронная техника»; лаборатории по информационным технологиям.

Оборудование учебного кабинета:

- автоматизированное рабочее место преподавателя;
- посадочные места обучающихся (по количеству обучающихся).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиапроектор.

Оборудование лаборатории по информационным технологиям:

- автоматизированное рабочее место преподавателя; автоматизированное рабочие места обучающихся (по количеству обучающихся);
- сетевое периферийное оборудование;
- периферийное оборудование для вводы и вывода информации;
- мультимедийное оборудование;
- комплект лабораторного оборудования;
 измерительная аппаратура.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Рекомендуемые учебные издания:

- 1 4.Сиренький И.В, Рябинин В.В., Голощапов С.Н. Электронная техника.- С.- П.: Питер, 2006. 526с.
- 2 Бурков А.Т. Электронная техника и преобразователи.-М.:Транспорт. 1999. 464c.
- 3 В. В. Пасынков, В. С. Сорокин. Материалы электронной техники. Учеб-ник.-М.: Лань.2001.-368с.
- 4 Гальперин М.В. Электронная техника. Учебник.-М.: Инфра-М.2007.-352с.
- 5 Акимова Г.Н. Электронная техника. Учебник.-:М.: Инфра-М. 2003.-290с.

Периодические издания (отечественные журналы):

- 1. Радио;
- 2. Радиолюбитель;
- 3. Радиосхема;
- 4. Радиомир.

Интернет-ресурсы:

- 1 Техническая литература [Электронный ресурс]. Форма доступа: http://www.tehlit.ru, свободный. Загл. с экрана.
- 2 Портал нормативно-технической документации [Электронный ресурс]. Форма доступа: http://www.pntdoc.ru, свободный. Загл. с экрана.
- 3 Основы электроники и связи. Форма доступа: http://jstonline.narod.ru

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения	
Умения:	- тестовый контроль;	
определять разновидности радио-	- оценка результатов выполнения	
технических материалов по типу их	лабораторно-практических работ;	
проводимости;	- защита реферата (компьютерной	
	презентации).	
применять различные типы электронных	письменная проверка	
приборов в конкретных схемах;	- оценка результатов выполнения	
	лабораторно-практических работ;	
выполнять расчет параметров элек-	письменная проверка	
тронных приборов и их режимов	оценка результатов выполнения	
работы;	лабораторно-практических работ;	
Выбирать различные типы электронных	- оценка результатов выполнения	
приборов по справочной литературе;	лабораторно-практических работ;	
контролировать и анализировать	- оценка результатов выполнения	
эффективность использования рабочего	лабораторно-практических работ.	
времени		
выполнять расчет параметров элементов	-письменная проверка	
электронных схем	-оценка результатов выполнения	
	лабораторно-практических работ	
Знания:	-тестовый контроль	
физику возникновения и протекания		
электрического тока в различных		
материалах;		
правила чтения чертежей;	-устная проверка	
физические процессы в полупро-	-письменная проверка, тестовый контроль	
водниковых материалах, работу		
электронно - дырочного перехода;		

конструкцию, обозначение и принцип	-тестовый контроль
работы биполярного и полевого	
транзистора;	
конструкцию и принцип работы по-	-тестовый контроль
лупроводниковых приемников из-	
лучения;	
конструкцию и принцип работы	-письменная работа
матричных устройств отображения	
информации;	
Компоненты и топологию ИМС	-письменная работа
Принципы построения основных	-письменная проверка, тестовый контроль
схем электронных устройств	