Документ подписан простой электронной подписью Информация о владельце:

Уникальный программный ключ: Снежинский физико-технический институт —

d85fa2f25 филика федерального 7f6c3/дарственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СФТИ НИЯУ МИФИ)

Теоретическая фи	«УТВЕРЖДАЮ» Зам. руководителя по учебной и научно-методической работе «»
Направление подготовки (специальность) Профиль подготовки <u>«Теоретическа</u>	14.03.02 «Ядерные физика и технологии» ня физика (статистическая физика)»_
Квалификация (степень) выпускника	бакалавр
Форма обучения	очная

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Теоретическая физика (статистическая физика)» является ознакомление студентов с понятиями и методами статистической физики; получение навыков изучения физических явлений с микроскопической точки зрения; установление связи между макро (термодинамическим) и микроописанием, умение применять статистические методы в решении практических задач, а также освоение базовых приёмов компьютерного моделирования некоторых классических статистических систем.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина "Теоретическая физика (статистическая физика)" относится к вариативной части блока Б1 ООП ВО 14.03.02 «Ядерные физика и технологии» и является частью естественнонаучного модуля. Статистическая физика является основой современной физики, цель которой состоит во всестороннем исследовании физических явлений с микроскопической точки зрения. Для решения прикладных задач необходимо знать свойства среды в таких условиях, которые сильно затрудняют или даже исключают непосредственное измерение. В таких случаях очень важно уметь правильно оценивать возможности теоретических методов и рамки их применения.

Содержание дисциплины «Теоретическая физика (статистическая физика)» составлено на основе учебников, сборников задач, курсов лекции, монографий, предназначенных для студентов, аспирантов и преподавателей физических специальностей. В основу курса положен дедуктивный способ описания макромира, исходя из представлений об атомном и молекулярном строении вещества. Освоение динамических законов происходит в сочетании с основными принципами теории вероятности.

Перечень дисциплин, усвоение которых студентами необходимо для изучения данной дисциплины:

- 2.1. Общий курс физики (Б1.О.24).
- 2.2. Математика (Б1.О.23).
- 2.3. ТФКП (Б1.В.11).
- 2.4. Теория вероятности и математическая статистика (Б1.О.06).
- 2.5. Теоретическая физика (квантовая механика) (Б1.В.13.01).

3. КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Компетентностная модель соответствует требованиям ОС ВО НИЯУ МИФИ по специальности 14.03.02 «Ядерные физика и технологии».

Данная дисциплина способствует формированию следующих компетенций:

ОПК-1 – способен использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

ПК-19.1 — готов разрабатывать способы применения ядерно-энергетических установок, электронных, нейтронных и протонных пучков, методов экспериментальной физики в решении технических, технологических и медицинских проблем

В результате освоения дисциплины студент должен:

Знать:

- базовые понятия и законы статистической физики равновесных классических систем:
- метод канонического распределения;
- статистическую термодинамику классических и квантовых систем.

Уметь:

• использовать основные законы статистической физики в профессиональной деятельности, применять методы теоретического исследования;

Владеть:

- методологическими подходами к выбору теоретического инструментария, соответствующего решаемой задаче
- способностью к систематическому изучению научно-технической информации, отечественного и зарубежного опыта по соответствующему профилю подготовки.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Семестр	Трудоем-	Общий	Лекции,	Практич.	Контроль,	CPC,	Форма
		объем курса,	час.	занятия,	час.	час.	контроля,
	3ET	час.		час.			экз./зачет
6	3	108	36	18	27	27	экз

Общая трудоемкость дисциплины составляет 3 ЗЕТ, 108 час.

№ п/п	Раздел учебной дисциплины	Недели	включа рабо трудо Лекции	ебной деятелия самостоятеля самостоятелоту студентов емкость (в ча Практ. занятия/ семинары	тьную з и	Текущий контроль успеваемости (неделя, форма)	Аттеста- ция раздела (неделя, форма)	Макс. балл за раз- дел
		1.6		семестр	I	**		1.0
1	Принципы	1-6	12	6		Наличие		10
	статистической физики					конспектов, ответы на КВ,		
						выполнение		
						ДЗ		
2	Метод канонического	7-	12	6		Наличие		10 +
	распределения	12				конспектов,	Коллок-	20
						ответы на КВ,	виум	
						выполнение	9	
						Д3		
3	Статистическая	13-	12	6		Наличие		10
	термодинамика	18				конспектов,		
	классических и					ответы на КВ,		
	квантовых систем					выполнение		
						Д3		

Всег	070	50
	Экзамен	50
	Итого за семестр	100

КАЛЕНДАРНЫЙ ПЛАН

Недели	Содержание / Темы занятий	Лек., час.	Пр./сем.,
	6 семестр	iac.	iac.
1-6	Микроскопические и макроскопические состояния.	12	6
	Статистическое описание		
	Принцип априорной вероятности. Микроканонический ансамбль.		
	Термодинамический вес макроскопического состояния.		
	Наиболее вероятное состояние, флуктуации		
	Число состояний и плотность состояний		
	Фазовое пространство. Гамильтониан. Уравнение		
	Лиувилля		
	Усреднение по времени и по ансамблю. Эргодическая		
	гипотеза		
7-12	Контакт между системами. Равновесие между системами.	12	6
	Энтропия и температура		
	Каноническое и большое каноническое распределения		
	Основные законы термодинамики		
	Статистические суммы и термодинамические функции		
	Классические конфигурационные интегралы		
13-17	Статистическая сумма идеального газа	12	6
	Вычисление термодинамических свойств идеальных газов		
	Распределение Максвелла-Больцмана		
	Влияние поступательного, вращательного и		
	колебательного движения на термодинамические свойства		
	газов		
	Смеси идеальных газов		
	Взаимодействие молекул. Адиабатические столкновения,		
	потенциал взаимодействий		
	Скорость химических реакций		
	Кинетические характеристики процессов переноса в газах		
	Коэффициенты переноса в газах		
	Статистическая термодинамика квантовых газов. Случаи		
	сильного и слабого вырождения		
	Статистическая термодинамика равновесного излучения		
18	Экзамен		3

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Неделя	6 семестр			
1	Определение случайной величины, микроскопическое и макроскопическое			
	описание изолированных систем молекул идеального газа и одномерной			
	цепочки магнитных моментов. Вычисление термодинамической вероятности			
	нахождения системы при заданном макропараметре, количества доступных			
	состояний, наиболее вероятного значения макропараметра. Применение			
	формулы Стирлинга для вычисления числа состояний системы с большим			
	количеством частиц.			

	Домашнее задание: решение задач.
2	Микросостояния изолированной системы идеального одноатомного газа.
	Объем одного квантового состояния. Количество состояний одной молекулы,
	находящейся в объеме V, с энергий в диапазоне [E,E+dE]. Степень вырождения
	-
	энергетического уровня. Количество состояний N молекул в объеме V с
	энергией в диапазоне [E,E+dE]. Число состояний и плотность состояний.
	Домашнее задание: решение задач.
3	Неизолированные системы. Виды контактов между системами в
	термодинамике и статистической физике. Вывод условия теплового равновесия
	двух систем. Определение температуры. Статистическая энтропия.
	Домашнее задание: решение задач.
4	Моделирование одномерного случайного блуждания. Домашнее задание:
	написание и отладка программы. Сравнение численного и аналитического
	решений
5	Вычисление количества состояний и их энергии в изолированной системе
	магнитных моментов, состоящей из двух подсистем, находящихся в
	равновесии.
	Домашнее задание: решение задач.
6	Вычисление вероятности микросостояния системы, находящейся в контакте с
	термостатом – распределения Гиббса. Вероятность энергетического уровня.
	Квантовое и квазиклассическое представления нормирующего множителя.
	Статистическая сумма, статистический интеграл.
	Домашнее задание: решение задач.
7	
/	Вычисление равновесного значения магнитного момента парамагнитной системы, находящейся во внешнем магнитном поле при температуре Т. Закон
	Кюри. Условие температурного равновесия, средняя энергия, приходящаяся на
	одну частицу.
0	Домашнее задание: решение задач.
8	Адиабатический контакт двух систем. Определение параметров равновесного
	состояния идеального газа при постоянном внешнем давлении.
_	Домашнее задание: решение задач.
9	Моделирование установления равновесного состояния в одномерной цепочке
	магнетиков методом Изинга. Домашнее задание: написание и отладка
	программы. Сравнение численного и аналитического решений
10	Применение распределения Гиббса для системы идеального газа.
	Распределение Максвелла по энергии. Вычисление наиболее вероятного,
	среднего значения энергии одной молекулы и в случае N молекул. Вычисление
	флуктуации энергии одной молекулы и N молекул.
	Домашнее задание: решение задач, подготовка к коллоквиуму
11	Распределение Максвелла молекул идеального газа по скоростям. Вычисление
	средней скорости, наиболее вероятной скорости, среднеквадратичной скорости.
	Применение теоремы о равномерном распределении кинетической энергии по
	степеням свободы.
	Домашнее задание: решение задач
12	Частота ударов молекул идеального газа о стенку. Кинетическое обоснование
12	закона Дальтона. Распределение Максвелла молекул идеального газа по
	скорости, направленной под углом к одной из осей, и по скорости в
	направлении телесного угла. Энергия пучка молекул идеального газа,
	вылетающего из отверстия в вакуум.
10	Домашнее задание: решение задач
13	Распределение Больцмана молекул идеального газа по координатам.
	Вычисление концентрации молекул идеального газа, находящихся в

	однородном поле силы тяжести. Оценка поведения концентрации молекул у						
	дна сосуда в предельных случаях низких и высоких температур. Вычисление						
	средней потенциальной энергии, приходящейся на одну молекулу.						
	Изотермическая модель атмосферы Земли, оценка числа молекул в атмосфере.						
	Домашнее задание: решение задач						
14	Реализация алгоритма Метрополиса для моделирования установления						
	равновесного состояния N частиц идеального газа, находящихся при						
	температуре Т. Домашнее задание: написание и отладка программы. Сравнение						
	численного и аналитического решений						
15	Уравнение движения в форме Гамильтона. Вычисление элемента объема						
	фазового пространства. Фазовая траектория. Проверка справедливости теоремы						
	Лиувилля.						
	Домашнее задание: решение задач						
16	Вычисление квантовых и квазиклассических статистических сумм в						
	приближении канонического ансамбля. Вычисление термодинамических						
	параметров						
	Домашнее задание: решение задач						
17	Газокинетические коэффициенты. Вычисление свободного пробега молекулы						
	идеального газа по модели «твердых сфер» и при наличии адиабатического						
	потенциала взаимодействия						
	Домашнее задание: Подготовка к экзамену.						
18	Предэкзаменационная консультация.						

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекции:

- 1. комплект электронных презентаций/слайдов;
- 2. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук);

Семинары:

Занятия проводятся в интерактивной форме общения студентов между собой при поиске метода решения поставленной задачи. Преподаватель обеспечивает постановку задач и консультационное сопровождение методов решения. После каждого занятия выдается домашнее задание. Если возникают затруднения с его выполнением, на следующем занятии проводится консультация. В течение семестра предусмотрены индивидуальные консультации посредством обмена сообщениями между преподавателем и студентом по электронной почте. Для получения численного решения преподаватель обеспечивает постановку задачи, описание и обоснование алгоритма ее решения, процедуру оценки точности полученного численного решения и сравнения его с аналитическим решением (если оно существует). Завершения выполнения вычислительного эксперимента является частью самостоятельной работы студента.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Текущий контроль. – Каждая тема лекции обеспечена контрольными вопросами. Проверка усвоения теоретического материала осуществляется 15-ти минутным контролем

в начале каждой лекции (8 тестовых заданий за семестр). Регулярно проводится проверка выполнения домашних заданий.

Рубежный контроль. – В середине семестра проводится коллоквиум. Студенты отвечают на один теоретический вопрос и решают задачу.

Итоговый контроль. - В конце семестра проводится экзамен.

Студенты полностью обеспечены домашними заданиями и пособиями по всем разделам учебной дисциплины.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

- а) ОСНОВНАЯ ЛИТЕРАТУРА:
- 1. Кубо Р., Статистическая механика. М.: Мир, 1967.
- 2. Ландау Л.Д., Лифшиц Е.М. Статистическая физика, М.: Наука, 1964.
- 3. Ансельм А.И., Основы статистической физики и термодинамики. М.: Наука, 1973.
- 4. Kadanov L.P., Statistical Physics. World Scientific, 1999.
- 5. Кондратьев А.С., Романов В.П., Задачи по статистической физике. М.: Наука, 1992.
- б) ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:
- 1. Коткин Г.Л., Лекции по статистической физике. Новосиб. ун-т, 1999.
- 2. Waleska J.D., Fundamentals of Statistical Mechanics. World Scientific, 1989.
- 3. Kubo R., Toda M., Hasitsume N., Statistical Physics II. Springer-Verlag, 1979.
- 4. Задачи по термодинамике и статистической физике под ред. П.П. Ландсберга. М.: Мир, 1974.
- 5. Гулд Х., Тобочник Я., Компьютерное моделирование в физике. М.: Мир, 1990.
- 6. Биндер Л., Хеерман Д.В., Моделирование методом Монте-Карло в статистической физике. М.: Наука, Физматлит, 1995.

в) ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНТЕРНЕТ-РЕСУРСЫ:

Специальное программное обеспечение не требуется.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется.

Мультимедийная аудитория (Л-318). Компьютерный класс, оснащённый компьютерами с выходом в Интернет, а также принтером, сканером, ксероксом:

- Core Dual 2,4 МГц (2009 г.) 15 шт.
- Принтер HP LJ P3005 DN (2009 г.) 1 шт.
- Сканер HP SJ 4370 1 шт.
- Ноутбук Samsung (2008)
- Проектор ASER X1260 (2008)

Программа составлена в соответствии с требованиями ОС ВО НИЯУ МИФИ по направлению подготовки 14.03.02 «Ядерные физика и технологии», утвержденного Ученым советом НИЯУ МИФИ 31.05.2018 г.

Автор(ы): преподаватель Фальков Андрей Леонидович, преподаватель к.ф.-м.н., Глазырин Игорь Валерьевич, Котова Ольга Георгиевна, Хмелев Артём Вадимович.

Рецензент:	
Программа одобрена на	