МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Снежинский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СФТИ НИЯУ МИФИ)

	«УТВЕРЖДАЮ» Зам. руководителя по учебной и научно-методической работе			
	П.О. Румянцев			
	«»201 г.			
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ,	дисциплины			
Технология машиностро	рения			
наименование дисциплины				
Код и направление подготовки/специальности <u>15.05.01 «Проектирование тов»</u>	технологических машин и комплек-			
Профиль подготовки (специализация) Аддитивные т	ехнологии			
Квалификация (степень) выпускника				
Специал	ист			
(бакалавр, магистр, специал				
Форма обучения Очная				
Форма обучения <u>Очная</u> (очная, очно-заочная (вечерняя), зао	чная)			

ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Технология машиностроения» являются:

- приобретение студентами знаний способных сформировать целостное представление о проектировании и производстве деталей в машиностроительном производстве,
- математическое решение задач обеспечения и оценки точности и качества изготовления деталей машиностроительного производства,
- развитие инженерных навыков проектирования и расчета технологических процессов машиностроительного производства.

1. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Настоящая дисциплина относится к циклу профессиональных дисциплин, обеспечивающих подготовку специалиста.

Изучение дисциплины базируется на следующих дисциплинах: математика, физика, техническая механика, метрология стандартизация и сертификация, материаловедение, резание материалов, режущий инструмент, основы технологии машиностроения.

Знание дисциплины «Технология машиностроения» необходимо при выполнении курсового проектирования по данной дисциплине, а также выпускных квалификационных работ.

2. КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Интерфейс входных и выходных компетенций

Процесс обучения основывается на следующих входных компетенциях:

- способностью к абстрактному мышлению, анализу, синтезу; (ОК-1)
- готовностью к саморазвитию, самореализации, использованию творческого потенциала (OK-3)

Процесс изучения дисциплины направлен на формирование следующих выходных компетенций:

- способностью обеспечивать технологичность изделий и процессов их изготовления, контролировать соблюдение технологической дисциплины при изготовлении изделий (ПК-1)
- способностью составлять техническую документацию и подготавливать отчетность по установленным формам, подготавливать документацию для создания системы менеджмента качества на предприятии (ПК-6),
- способностью подготавливать исходные данные для выбора и обоснования научнотехнических и организационных решений на основе экономических расчетов (ПК-9)
- способностью к систематическому изучению научно-технической информации, отечественного и зарубежного опыта по соответствующей специализации (ПК-11),
- способностью подготавливать исходные данные для выбора и обоснования используемой аддитивной технологии и организационных решений на основе экономических расчетов (ПК-13).
- способностью разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам (ПК-17),
- способностью выбирать необходимые технические данные для обоснованного принятия решений по проектированию инструментальных комплексов в машиностроении (ПСК-1.6),
- способностью создавать и корректировать компьютерные/цифровые модели с использованием средства бесконтактной оцифровки, входного и выходного контроля (ПСК-1.3),
- способностью выполнять технико-экономический анализ целесообразности выполнения проектных работ по созданию инструментальных комплексов в машиностроении (ПК-1.7),

В результате изучения дисциплины студенты должны:

Знать:

- практические приемы и методы проектирования технологических процессов;
- основные виды основные виды технологий используемые в проектировании технологических процессов;
 - способы формирования точности поверхностей деталей;
 - методы оценки точности различных способов изготовления деталей;
 - технологические особенности различных способов производства деталей;
 - методы выбора и оценки качества различных технологических процессов.

Уметь

- формулировать задачи проектирования технологических процессов,
- выбирать методы проектирования технологических процессов;
- формировать математические модели технологических процессов;
- анализировать результаты расчета и формулировать практически значимые выводы;
- работать со справочной и специальной литературой по проектированию технологических процессов.

Иметь опыт:

- построения математических технологических процессов;
- определения надежности различных технологических процессов;
- представления результатов проектирования технологических процессов в соответствии с требованиями ГОСТов.

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет _____10___ кредитов, __360____ часов.

№	Раздел учебной	Не	Виды учебной деятельности,		Текущий	Аттестация	Максималь	
Π/Π	дисциплины	де	включая самостоятельную		контроль	раздела	ный балл за	
		ЛИ	работу студентов и		успеваемости	(неделя,	раздел *	
			трудоемкость (в часах)		(неделя,	форма)		
			Лекции	Практ.	Лаб.	форма)		
				занятия/	работы			
				курс. пр.				
	<u>8,9</u> семестр							
1	Проектирование					3, устный	3,	
	технологических		9	6	3	опрос	письменный	
	процессов. Техно-	1-3	(8 часов	(8 часов	(9 часов		опрос	8
	логия предвари-		CPC)	CPC)	CPC)			
	тельной обработки							
	заготовок							
2	Технология обра-		9			5,	5	
	ботки деталей ти-	4-6	(8 часов	6	3	устный опрос	письменный	
	па «вал»		CPC)	(8 часов	(9 часов		опрос	8
				CPC)	CPC)			
3	Технология обра-		9	6	3	7,	7,	
	ботки деталей ти-	7-9	(8 часов	(9 часов	(9 часов	устный опрос	письменный	8
	па «отверстие»		CPC)	CPC)	CPC)		опрос	

№ п/п	Раздел учебной дисциплины	Не де ли	Виды учебной деятельност включая самостоятельнун работу студентов и трудоемкость (в часах)		гельную гов и	Текущий контроль успеваемости (неделя, форма)	Аттестация раздела (неделя, форма)	Максималь ный балл за раздел *
			Лекции	Практ. занятия/	лао. работы	форми)		
				курс. пр.	•			
	<u>8,9</u> семестр							
4	Технология обра- ботки деталей имеющих плоские поверхности, кор- пуса	10-12	9 (8 часов СРС)	6 (8 часов СРС)	3 (9 часов СРС)	10, устный опрос	10, письменный опрос	8
5	Технология обра- ботки зубчатых деталей, шлицов, резьбы	13-15	9 (8 часов СРС)	6 (8 часов СРС)	3 (9 часов СРС)	13, устный опрос	13, письменный опрос	8
6	Технология сборочных процессов	16-18	9 (8 часов СРС)	6 (8 часов СРС)	3 (9 часов СРС)	17, устный опрос	17, письменный опрос	10
	. Экзамен/зачет					0 - 50		
	Итого за _семестр:					100		

^{* 100} баллов за семестр, включая зачет или экзамен.

ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ОС НИЯУ МИФИ по данному направлению подготовки в программе дисциплины предусмотрено использование в учебном процессе активных и интерактивных форм проведения занятий. Эти технологии в сочетании с внеаудиторной работой решают задачи формирования и развития профессиональных умений и навыков обучающихся, как основы профессиональной компетентности в сфере образования.

Занятия по дисциплине «Технологии машиностроения» включают в себя 54 часа лекций в оборудование. лекций имеющей мультимедийное Материал использованием слайд-шоу, обучающих видеофильмов и роликов. Лабораторные работы проводятся в специализированной лаборатории, оснащенной необходимым оборудованием и оснасткой. Тестирование студентов проводится в компьютерном классе, имеющем необходимое программное обеспечение и доступ в интернет. Самостоятельная практическая работа студентов (216 часов) заключается в чтении студентами дополнительной литературы, подготовке к лекциям и лабораторным работам, а также практическому выполнению курсового проекта по дисциплине. Содержание курсового проекта состоит в проектировании технологического процесса изготовлении детали «средней» сложности, расчете и проектировании специальной технологической оснастки для обработки данной детали. Курсовой проект выполняется согласно методическим указаниям.

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.

В соответствии с требованиями ОС НИЯУ МИФИ для проведения текущего контроля успеваемости и промежуточной аттестации студентов на соответствие их персональных достижений поэтапным требованиям ООП вузом созданы фонды оценочных средств. Для дисциплины «Технология машиностроения» данные фонды включают в себя:

- а) решение задач по изучаемой теме на практических занятиях;
- б) устный и письменный опрос студентов во время лекции по изучаемому материалу;
- в) проведение рейтинг-контроля.

4.1 Вопросы для рейтинг-контроля:

Первый рейтинг-контроль.

- 1. Термины и понятия курса «Технология машиностроения».
- 2. Виды технологических процессов в зависимости от масштабов производства. Признаки классификации технологических процессов по видам обрабатываемых деталей.
- 3. Основные классы технологических процессов.
- 4. Признаки классификации технологических процессов.
- 5. Показатели качества технологических процессов.

Второй рейтинг-контроль.

- 1. Методы проектирования технологических процессов.
- 2. Технологии, используемые при изготовлении деталей.
- 3. Специальные показатели надежности технологических процессов.
- 4. Выбор плана обработки и способа изготовления детали.
- 5. Задание требований при проектировании технологических процессов.

4.2 Практические занятия

Практические занятия являются формой индивидуально-группового и практикоориентированного обучения на основе реальных или модельных ситуаций применительно к виду и профилю профессиональной деятельности.

Целью практических занятий является:

- подтверждение теоретического материала, полученного на лекционных занятиях, путем проведения небольших по объему исследований по изучаемой теме;
- приобретение практических навыков и инструментальных компетенций в области моделирования и проведения инженерных расчетов по профилю профессиональной деятельности.

Перед проведением практических занятий студенты должны освоить требуемый теоретический материал и процедуры выполнения работ по выданным им предварительно учебным и методическим материалам.

Практическое занятие № 1. Построение размерной схемы технологического процесса с учетом несоосностей.

Практическое занятие № 2. Численный расчет технологической размерной цепи, определение и анализ величин замыкающих звеньев с учетом несоосностей.

Практическое занятие № 3. Проектирование нового технологического процесса, с учетом несоосностей, на основе размерного анализа базового.

4.3. Самостоятельная работа студентов.

Целью самостоятельной работы являются формирование творческой личности студента, развитие его способности к самообучению и повышению своего профессионального уровня. Основные формы самостоятельной работы заключаются в проработке дополнительной литературы, подготовке к практическим занятиям, устному опросу, контрольным работам и рейтинг-контролю, самостоятельной работе над курсовым проектом. Контроль за самостоятельной работой студентов осуществляется на консультациях, во время работы на занятиях.

4.4 Примерный перечень вопросов к зачету/экзамену:

- 1. Выбор заготовок валов и их предварительная обработка.
- 2. Типовые технические требования к процессам обтачивания валов.
- 3. Порядок обработки ступеней прутка при обдирке проката.
- 4. Многорезцовое обтачивание валов.
- 5. Обработка гладких и нежестких валов.
- 6. Обработка крупных валов в тяжелом машиностроении.
- 7. Обработка полых валов, обработка шпинделей.
- 8. Обработка на валах шпоночных канавок.
- 9. Методы чистовой обработки валов.
- 10. Бесцентровое шлифование валов.
- 11. Методы отделочной обработки валов.
- 12. Обработка отверстий сверлением, зенкерованием, растачиванием.
- 13. Обработка глубоких отверстий.
- 14. Типовые планы обработки отверстий.
- 15. Особенности протягивания и прошивания отверстий.
- 16. Методы чистовой обработки отверстий.
- 17. Методы отделочной обработки отверстий.
- 18. Особенности обработки втулок в мелкосерийном и массовом производстве.
- 19. Особенности обработки тонкостенных втулок (гильз).
- 20. Особенности обработки дисков.
- 21. Обработка деталей на токарно-револьверных станках и станках автоматах.
- 22. Обработка многоосных деталей.
- 23. Обработка коленчатых валов.
- 24. Обработка деталей класса крестовина.
- 25. Обработка поршней.
- 26. Обработка шатунов.
- 27. Обработка плоскостей строганием и фрезерованием.
- 28. Обработка плоскостей протягиванием.
- 29. Шлифование плоскостей.
- 30. Методы отделочной обработки плоскостей.
- 31. Обработка плоских деталей с отверстиями.
- 32. Особенности обработки точных соосных отверстий.
- 33. Обработка сопряженных отверстий, оси которых связаны точными размерами.
- 34. Обработка фасонных деталей.
- 35. Обработка фасонных поверхностей вращения.
- 36. Некруглое обтачивание фасонных деталей.
- 37. Фасонное шлифование.
- 38. Типовые требования предъявляемые к зубчатым деталям.
- 39. Типовые планы обработки шестерен.
- 40. Методы предварительной обработки шестерен.
- 41. Методы чистовой обработки шестерен.
- 42. Особенности обработки шлицевых деталей.
- 43. Методы получения резьбовых поверхностей.
- 44. Обработка ходовых винтов и червяков.
- 45. Общие подходы к автоматизации технологических процессов изготовления деталей.
- 46. Технология сборки типовых сборочных единиц.
- 47. Автоматизация сборочных процессов.
- 48. Особенности монтажа подшипниковых узлов, валов, зубчатых и червячных передач.
- 49. Порядок разработки технологического процесса сборки.

5. УЧЕЬНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

а) основная литература:

- 1. Маталин А.А. Технология машиностроения. Учебник. Изд. 3-е, стереотип.. СПб. Лань, 2016.- 512с.
- 2. Базров Б.М. Основы технологии машиностроения. М., Высшая школа, 2005. 736 с.
- 3. Технология машиностроения. В 2 кн. Кн.2 Производство деталей машин. / С.Л. Мурашкин, ред. М.: Высшая школа, 2013.- 295 с.
 - б) дополнительная литература:
- 1. Справочник технолога машиностроителя: Справочник в 2-х томах / Под ред. А.Г. Косиловой и Р.К. Мещерякова.- М.: Машиностроение, 1985.-Т.1.-656с.
- 2. Клепиков В.В. Технология машиностроения. М.: Форум-инфра-М, 2004. 860 с.
- 3. Орлов А.А. Лабораторные работы по курсу «Технология машиностроения». Учебнометодическое пособие.- Снежинск: СФТИ НИЯУ МИФИ, 2012.-44с.
- 4. Орлов А.А. Курсовое проектирование по технологии машиностроения». Учебнометодическое пособие.- Снежинск: СФТИ НИЯУ МИФИ, 2013.-26с.
 - в) программное обеспечение и Интернет-ресурсы:
 - 1. http://www.sme.org/cgi-bin/getsmepg.pl?/gmn/mag/home.html&&&SME&NONAV&
 - 2.http://sdo.irgups.ru/courses data/23/kurs lektsii, uchebnoe posobie po distsipline/TPvM/doc/tehmash/index-2.html
 - 3. http://www.tstu.ru/education/elib/pdf/2003/fidarov1.pdf
 - 4. http://supermetalloved.narod.ru/books.htm
 - 5. http://ru.wikipedia.org/wiki/%D
 - 6. http://www.bmstu.ru/~rk3/sprav/map.html
 - 7. http://www.natahaus.ru/2007/01/12/jenciklopedija_mashinostroenija_tom_1__materialy.html
 - 8. http://technolog.p0.ru/load/0-1
 - 9. http://www.laem.ru/node/293

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Практические занятия обеспечены современными техническими средствами. При выполнении практических занятий студенты знакомятся с конструктивными методами проектирования технологических процессов, методикой расчета точности проектирования, а также расчетом точности и припусков под обработку.

В качестве материально-технического обеспечения дисциплины используются также мультимедийные средства, наборы слайдов, электронные каталоги, учебные пособия и справочники. Лекционные занятия проводятся в аудиториях, оборудованных мультимедийными системами, компьютерами и экранами.

Программа составлена в соответствии с требованиями ОС НИЯУ МИФИ по направлению подготовки (специальности) 15.05.01 «Проектирование технологических машин и комплексов»

Автор – доцент кафедры «Технология машиностроения», Орлов Александр Анатольевич					
Рецензент – Абраменко Юрий Сергеевич, к.т.н., инженер КБ-1 РФЯЦ					
ВНИИТФ					

Программа одобрена на заседании кафедры «Технология машиностроения»

« » 201 года